Trigonometry NTSE & JEE Foundation | Class 10 Solved Problems and Examples


Trigonometry Practical Solved Problems for NTSE & JEE Foundation Exams


If sin A + cosec A = 2; Find the value of sin2 A + cosec2 A.

Solution:

Given, sin A + cosec A = 2

On squaring on both sides, we have

(sin A + cosec A)2 = 22

sin2 A + cosec2 A + 2sinA. cosec A = 4

sin2 A + cosec2 A + 2 = 4 [As sin A. cosec A = sin A x 1/sin A = 1]

sin2 A + cosec2 A = 4 – 2 = 2

Hence, the value of (sin2 A + cosec2 A) is 2


Evaluate the values of: (i) cos B (ii) sec2 B (ii) cot C (iii) sin2B + cos2B (iv) sin B. cos C + cos B. sin C from the following diagram.

Solution:

Evaluate the values of: (i) cos B (ii) sec2 B (ii) cot C (iii) sin2B + cos2B (iv) sin B. cos C + cos B. sin C from the following diagram.

Given that, ∠BAC = 90o

BC2 = AB2 + AC2 (From diagram, BC is the hypotenuse)

172 = 82 + AC2

AC2 = 289 – 64 = 225

Taking square root on both sides, we get

AC = 15 cm

(i) cos B = base/hypotenuse

cos B = AB/BC = 8/17

(ii) sec2 B = (hypotenuse/base)2

sec2 B = (BC/AB)2 = (17/8)2 = 289/64

(iii) cot C = base/perpendicular

cot C = AC/AB = 15/8

(iii) sin B = perpendicular/hypotenuse

sin B = AC/BC = 15/17

cos B = base/hypotenuse

cos B = AB/BC = 8/17

Now,

sin2 B + cos2 B = (15/17)2 + (8/17)2

sin2 B + cos2 B = (225 + 64)/289 = 289/289 = 1

(iv) sin B = perpendicular/hypotenuse

sin B = AC/BC = 15/17

cos B = base/hypotenuse

cos B = AB/BC = 8/17

sin C = perpendicular/hypotenuse

sin C = AB/BC = 8/17

cos C = base/hypotenuse

cos C = AC/BC = 15/17

Now,

sin B. cos C + cos B. sin C = 15/17 x 15/17 + 8/17 x 8/17

sin B. cos C + cos B. sin C = (225 + 64)/289

sin B. cos C + cos B. sin C = 289/289 = 1


Evaluate the values of: (i) cos A  (ii) cosec A (iii) tan2A – sec2 (iv) sin C (v) sec C  (vi) cot2 C – 1/sin2 C from the following diagram.

Solution:

Evaluate the values of: (i) cos A  (ii) cosec A (iii) tan2A – sec2A  (iv) sin C (v) sec C  (vi) cot2 C – 1/sin2 C from the following diagram

Considering the given diagram, we have

∠ADB = 90o and ∠BDC = 90o

So, by Pythagoras theorem

AB2 = AD2 + BD2 (As AB is the hypotenuse in ∆ABD)

AB2 = 32 + 42 = 9 + 16 = 25

Taking square root on both sides, we get

AB = 5

Also,

BC2 = BD2 + DC2 (As BC is the hypotenuse in ∆BDC)

DC2 = BC2 – BD2

DC2 = 122 – 42 = 144 – 16 = 128

Taking square root on both sides, we get

DC = 8√2

Now,

(i) cos A = base/hypotenuse

cos A = AD/AB

cos A = 3/5

(ii) cosec A = hypotenuse/perpendicular

cosec A = AB/BD

cosec A = 5/4

(iii) tan A = perpendicular/base

tan A = BD/AD

tan A = 4/3

sec A = hypotenuse/base

sec A = AB/AD

sec A = 5/3

tan2 A – sec2 A = (4/3)2 – (5/3)2

tan2 A – sec2 A = 16/9 – 25/9

tan2 A – sec2 A = -9/9

tan2 A – sec2 A = -1

(iv) sin C = perpendicular/hypotenuse

sin C = BD/BC

sin C = 4/12

sin C = 1/3

(v) sec C = hypotenuse/base

sec C = BC/DC

sec C = 12/8√2

sec C = 3/2√2 = 3√2/4

(vi) cot C = base/perpendicular

cot C = DC/BD

cot C = 8√2/4

cot C = 2√2

sin C = perpendicular/hypotenuse

sin C = BD/BC

sin C = 4/12

sin C = 1/3

Now,

cot2 C – 1/sin2 C = (2√2)2 – 1/(1/3)2

cot2 C – 1/sin2 C = 8 – 1/(1/9)

cot2 C – 1/sin2 C = 8 – 9

cot2 C – 1/sin2 C = -1


Evaluate the values of: (i) sin B  (ii) tan C (iii) sec2 B – tan2 (iv) sin2C + cos2C from the following diagram.

Evaluate the values of: (i) sin B  (ii) tan C (iii) sec2 B – tan2B  (iv) sin2C + cos2C from the following diagram.

Solution:

From the figure, we have

∠ADB = 90o and ∠ADC = 90o

So, by Pythagoras theorem

AB2 = AD2 + BD2 (As AB is the hypotenuse in ∆ABD)

132 = AD2 + 52

AD2 = 132 – 52 = 169 – 25 = 144

Taking square root on both sides, we get

AD = 12

Also,

AC2 = AD2 + DC2 (As AC is the hypotenuse in ∆ADC)

AC2 = 122 + 162 = 144 + 256 = 400

Taking square root on both sides, we get

AC = 20

Now,

(i) sin B = perpendicular/hypotenuse = AD/AB = 12/13

(ii) tan C = perpendicular/base = 12/16 = 3/4

(iii) sec B = hypotenuse/base = AB/BD = 13/5

tan B = perpendicular/base = AD/BD = 12/5

Hence,

sec2 B – tan2 B = (13/5)2 – (12/5)2 = (169 – 144)/25 = 25/25 = 1

(iv) sin C = perpendicular/hypotenuse = AD/AC = 12/20 = 3/5

cos C = base/hypotenuse = DC/AC = 16/20 = 4/5

Hence,

sin2 C + cos2 C = (3/5)2 + (4/5)2 = (9 + 16)/25 = 25/25 = 1


Evaluate the values of: (i) sin A (ii) sec A (iii) cos2 A + sin2A from the following diagram.

Evaluate the values of: (i) sin A (ii) sec A (iii) cos2 A + sin2A from the following diagram.

Solution:

From the given figure, we have

∠ABC = 90o and AC is the hypotenuse ∆ABC

So, by Pythagoras Theorem

AC2 = AB2 + BC2 = a2 + a2 = 2a2

Taking square root on both sides, we get

AC = √2a

Now,

(i) sin A = perpendicular/hypotenuse= BC/AB = a/√2a = 1/√2

(ii) sec A = hypotenuse/base = AC/AB = √2a/a = √2

(iii) sin A = perpendicular/hypotenuse = BC/AC = a/√2a = 1/√2

cos A = base/hypotenuse = AB/AC = a/√2a = 1/√2

Hence,

cos2 A + sin2 A = (1/√2)2 + (1/√2)2 = ½ + ½ = 1


From the following diagram, find: (i) Y (ii) sin xo (iii) (sec xo – tan xo) (sec xo + tan xo)

From the following diagram, find: (i) Y (ii) sin xo (iii) (sec xo – tan xo) (sec xo + tan xo)

Solution:

From the given diagram,

(i) As it’s a right-angled triangle, so using Pythagorean Theorem

22 = y+ 12

y2 = 22 – 12

y2 = 4 – 1

y2 = 3

Taking square root on both sides, we get

y = √3

(ii) sin xo = perpendicular/hypotenuse = √3/2

(iii) tan xo = perpendicular/base = √3

sec xo = hypotenuse/base = 2

Therefore,

(sec xo – tan xo) (sec xo + tan xo) = (2 – √3)(2 + √3)

(sec xo – tan xo) (sec xo + tan xo) = 4 – √3 = 1


Evaluate (i) sin xo  (ii) cos yo (iii) 3 tan xo – 2 sin yo + 4 cos yo from the following diagram

Evaluate (i) sin xo  (ii) cos yo (iii) 3 tan xo – 2 sin yo + 4 cos yo from the following diagram

Solution:

Let’s consider the given figure,

As the triangle is a right-angled triangle, so using Pythagorean Theorem

AD2 = 82 + 62 = 64 + 36 = 100

Taking square root on both sides, we get

AD = 10

Also, by Pythagorean Theorem

BC2 = AC2 – AB2 = 172 – 82 = 289 – 64 = 225

Taking square root on both sides, we get

BC = 15

Now,

(i) sin xo = perpendicular/hypotenuse = 8/17

(ii) cos yo = base/hypotenuse = 6/10 = 3/5

(iii) sin yo = perpendicular/base = AB/AD = 8/10 = 4/5

And,

cos yo = 6/10 = 3/5

So,

tan xo = perpendicular/base = AB/BC = 8/15

Therefore,

3 tan xo – 2 sin yo + 4 cos yo =

= 3(8/15) – 2(4/5) + 4(3/5)

= 8/5 – 8/5 + 12/5 = 12/5


In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC. Find: (i) cos ∠DBC (ii) cot ∠DBA

Evaluate (i) sin xo  (ii) cos yo (iii) 3 tan xo – 2 sin yo + 4 cos yo from the following diagram

Solution:

Let’s consider the given figure,

As the triangle is a right-angled triangle, so using Pythagorean Theorem

AC2 = 52 + 122 = 25 + 144 = 169

Taking square root on both sides, we get

AC = 13

In ∆CBD and ∆CBA,

∠C is common to both the triangles

∠CDB = ∠CBA = 90o

Hence, ∠CBD = ∠CAB

Thus, ∆CBD and ∆CBA are similar triangles according to A criterion

So, we have

AC/BC = AB/BD

13/5 = 12/BD

BD = 60/13

Now,

(i) cos ∠DBC = base/hypotenuse = BD/BC = (60/13)/5 = 12/13

(ii) cot ∠DBA = base/perpendicular = BD/AB = (60/13)/12 = 5/13


In the given diagram, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm. Find: (i) tan ∠DBC (ii) sin ∠DBA

In the given diagram, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm. Find: (i) tan ∠DBC (ii) sin ∠DBA

Solution:

Considering the given figure, we have

A right-angled triangle ABC, so by using Pythagorean Theorem we have

AC2 = BC2 + AB2 = 42 + 32 = 16 + 9 = 25

Taking square root on both sides, we get

AC = 5

In ∆CBD and ∆CAB, we have

∠BCD = ∠ACB (Common)

∠CDB = ∠CBA = 90o

Hence, ∆CBD ~ ∆CAB by A similarity criterion

So,

AC/BC = AB/BD

5/3 = 4/BD

BD = 12/5

Now, using Pythagorean Theorem in ∆BDC

DC2 = BC2 – BD2

DC2 = 32 – (12/5)2 = 9 – 144/25 = (225 – 144)/25

= 81/25

Taking square root on both sides, we get

DC = 9/5

Therefore,

AD = AC – DC = 5 – 9/5 = 16/5

Now,

(i) tan ∠DBC = perpendicular/ base = DC/BD = (9/5)/(12/5) = 3/4

(ii) sin ∠DBA = AD/AB = (16/5)/4 = 4/5


From the following diagram, In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos ∠ABC.

Solution:

Let’s consider the diagram below:

From the following diagram, In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos ∠ABC.

 In the isosceles ∆ABC, we have

AB = AC = 15 cm

BC = 18 cm

Now, the perpendicular drawn from angle A to its opposite BC divides its into two equal parts

i.e., BD = DC = 9cm

Hence,

cos ABC = base/hypotenuse

cos ABC = BD/AB = 9/15 = 3/5


In the diagram given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find: (i) sin B  (ii) tan C (iii) sin2 B + cos2 (iv) tan C – cot B

In the diagram given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find: (i) sin B  (ii) tan C (iii) sin2 B + cos2B  (iv) tan C – cot B

Solution:

In the isosceles ∆ABC, we have

AB = AC = 5 cm

BC = 8 cm

Now, the perpendicular drawn from angle A to its opposite BC divides its into two equal parts

i.e., BD = DC = 4cm

As, ∠ADB = 90in ∆ABD, we have

AB2 = AD2 + BD2

AD= AB2 – BD2

AD= 52 – 42 = 25 – 16 = 9

Taking square root on both sides, we get

AD = 3

Now,

(i) sin B = AD/AB = 3/5

(ii) tan C = AD/DC = 3/4

(iii) sin B = AD/AB

= 3/5

cos B = BD/AB = 4/5

Hence,

sin2 B + cos2 B = (3/5)2 + (4/5)2

sin2 B + cos2 B = 9/25 + 16/25 = 25/25 = 1

(iv) tan C = AD/DC = 3/4

cot B = BD/AD = 4/3

Hence,

tan C – cot B = 3/4 – 4/3 = (9 – 16)/12 = -7/12


In triangle ABC; ∠ABC = 90o, ∠CAB = xo, tan xo = 3/4 and BC = 15 cm. Find the measures of AB and AC.

Solution:

Let’s consider the figure below:

In triangle ABC; ∠ABC = 90o, ∠CAB = xo, tan xo = 3/4 and BC = 15 cm. Find the measures of AB and AC.

Given, tan xo = 3/4

tan xo = perpendicular/base = 3/4

BC/AB = 3/4

Hence,

If length of base AB = 4x, the length of perpendicular BC = 3x

So, by Pythagoras Theorem

BC2 + AB2 = AC2

(3x)2 + (4x)2 = AC2

AC2 = 9x2 + 16x2 = 25x2

Taking square root on both sides, we get

AC = 5x, which is the hypotenuse

Now, we have

BC = 15

⇒ 3x = 15

x = 5

Therefore, AB = 4x = 4(5) = 20 cm

And, AC = 5x = 5 × 5 = 25 cm


Using the measurements given in the following diagram : (i) Find the value of sin Ø and tan θ (ii) Write an expression for AD in terms of θ

Using the measurements given in the following diagram : (i) Find the value of sin Ø and tan θ (ii) Write an expression for AD in terms of θ

Solution:

Let’s consider the figure above:

Constructing a perpendicular from D to the side AB at point E which makes BCDE a rectangle.

Now, in right angled ∆BCD using Pythagorean Theorem, we have

BD2 = BC2 + CD2 [As AB is the hypotenuse]

CD2 = BD2 – BC2

CD2 = 132 – 122

CD2 = 169 – 144 = 25

Taking square root on both sides, we get

CD = 5

As BCDE is a rectangle,

ED = 12 cm, EB = 5 cm and AE = (14 – 5) cm = 9 cm

Now,

(i) sin Ø = CD/BD = 5/13

tan θ = ED/AE = 12/9 = 4/3

(ii) sec θ = AD/AE = AD/9

AD = 9 sec θ

Or

cosec θ = AD/ED

cosec θ = AD/12

AD = 12cosec θ


In the given diagram : BC = 15 cm and sin B = 4/5.(i) Calculate the measure of AB and AC. (ii) Now, if tan ∠ADC = 1; calculate the measures of CD and AD. Also, show that: tan2B – 1/cos2 B = -1

In the given diagram : BC = 15 cm and sin B = 4/5.(i) Calculate the measure of AB and AC. (ii) Now, if tan ∠ADC = 1; calculate the measures of CD and AD. Also, show that: tan2B – 1/cos2 B = -1

 

Solution:

Given, BC = 15 cm and sin B = 4/5

⇒ Perpendicular/hypotenuse = AC/AB

sin B = 4/5 = AC/AB

Hence, if the length of perpendicular is AC = 4x, the length of hypotenuse will be AB = 5x

In right triangle ABC, we have

BC2 + AC2 = AB2 [By Pythagoras Theorem]

BC2 = AB2 – AC2

BC2 = (5x)2 – (4x)2

BC2 = 25x2 – 16x2

BC2 = 9x2

Taking square root on both sides, we get

BC = 3x

Now, as BC = 15 (given)

3x = 15

x = 15/3

x = 5

(i) AC = 4x = 4(5) = 20 cm

And,

AB = 5x = 5(5) = 25 cm

(ii) Given,

tan ∠ADC = 1

perpendicular/base = AC/CD = 1/1

Hence, If length of perpendicular is x, then the length of hypotenuse will be x

And, we have

AC2 + CD2 = AD2 [Using Pythagoras Theorem]

x2 + x2 = AD2

AD2 = 2x2

Taking square root on both sides, we get

AD = √2x

Now,

AC = 20 ⇒x = 20

So,

AD = √2x = √2(20) = 20√2 cm

And,

CD = 20 cm

Hence,

tan B = AC/BC = 20/15 = 4/3

cos B = BC/AB = 15/25 = 3/5

Thus,

tan2 B – 1/cos2 B = (4/3)2 – 1/(3/5)2

tan2 B – 1/cos2 B = 16/9 – 1/(9/25)

tan2 B – 1/cos2 B = 16/9 – 25/9 = – 9/9 = -1