Anand Classes presents well-structured NCERT Solutions for Integrals Exercise 7.7 of Chapter 7 for Class 12 Mathematics, designed to help students master advanced integration techniques through detailed, step-by-step explanations. These notes follow the latest NCERT guidelines and provide clear concepts, solved examples, and accurate answers to enhance exam preparation and conceptual understanding. Click the print button to download study material and notes.
NCERT Question 1: Evaluate the integral
$$\int \sqrt{4 – x^{2}}\;dx$$
Solution
$$\int \sqrt{4 – x^{2}}\;dx$$
Rewrite the integrand as:
$$\sqrt{4 – x^{2}} = \sqrt{2^{2} – x^{2}}$$
Use the standard formula:
$$\int \sqrt{a^{2} – x^{2}}\;dx = \frac{x}{2}\sqrt{a^{2} – x^{2}} + \frac{a^{2}}{2}\sin^{-1}\left(\frac{x}{a}\right) + C$$
Here, (a = 2). Substitute into the formula:
$$\int \sqrt{4 – x^{2}}\;dx = \frac{x}{2}\sqrt{4 – x^{2}} + \frac{4}{2}\sin^{-1}\left(\frac{x}{2}\right) + C$$
Simplify:
$$\int \sqrt{4 – x^{2}}\;dx = \frac{x}{2}\sqrt{4 – x^{2}} + 2\sin^{-1}\left(\frac{x}{2}\right) + C$$
Final Answer
$$\boxed{\frac{x}{2}\sqrt{4 – x^{2}} + 2\sin^{-1}\left(\frac{x}{2}\right) + C}$$
Strengthen your understanding of integration with detailed solutions from Anand Classes, ideal for CBSE and JEE aspirants who want clear and accurate explanations.
NCERT Question 2: Evaluate the integral
$$\int \sqrt{1 – 4x^2}\;dx$$
Solution
We rewrite the integral as
$$\int \sqrt{1 – (2x)^2}\;dx$$
Let
$$2x = y \quad\Rightarrow\quad 2\;dx = dy \quad\Rightarrow\quad dx = \frac{dy}{2}$$
So the integral becomes
$$\frac{1}{2}\int \sqrt{1 – y^2}\;dy$$
Using the standard result
$$\int \sqrt{1 – y^2}\;dy = \frac{y}{2}\sqrt{1 – y^2} + \frac{1}{2}\sin^{-1}(y) + C$$
we get
$$\frac{1}{2}\int \sqrt{1 – y^2}\;dy=\frac{1}{2}\left[\frac{y}{2}\sqrt{1 – y^2} + \frac{1}{2}\sin^{-1}(y)\right] + C$$
Now substitute $(y = 2x)$:
$$\int \sqrt{1 – (2x)^2}\;dx=\frac{1}{2}\left[\frac{2x}{2}\sqrt{1 – (2x)^2} + \frac{1}{2}\sin^{-1}(2x)\right] + C$$
Simplifying,
$$\int \sqrt{1 – (2x)^2}\;dx=\frac{x}{2}\sqrt{1 – 4x^2} + \frac{1}{4}\sin^{-1}(2x) + C$$
Final Answer
$$\boxed{\frac{x}{2}\sqrt{1 – 4x^2} + \frac{1}{4}\sin^{-1}(2x) + C}$$
Strengthen your preparation with expertly formatted solutions and premium study material by Anand Classes for CBSE and JEE.
NCERT Question.3: Evaluate the integral
$$\int \sqrt{x^2 + 4x + 6}\;dx$$
Solution
$$\int \sqrt{x^2 + 4x + 6}\;dx$$
Rewrite the expression inside the root:
$$x^2 + 4x + 6 = (x+2)^2 + (\sqrt{2})^2$$
So the integral becomes
$$\int \sqrt{(x+2)^2 + (\sqrt{2})^2}\;dx$$
Let
$$(x+2)=y \quad\Rightarrow\quad dx = dy$$
Thus,
$$\int \sqrt{y^2 + (\sqrt{2})^2}\;dy$$
Using the standard formula
$$\int \sqrt{y^2 + a^2}\;dy = \frac{y}{2}\sqrt{y^2 + a^2} + \frac{a^2}{2}\ln\left|y + \sqrt{y^2 + a^2}\right| + C,$$
we get
$$\int \sqrt{y^2 + (\sqrt{2})^2}\;dy = \frac{y}{2}\sqrt{y^2 + 2} + \ln\left|y + \sqrt{y^2 + 2}\right| + C.$$
Substitute back $(y = x+2)$:
$$\int \sqrt{x^2 + 4x + 6}\;dx=\frac{x+2}{2}\sqrt{(x+2)^2 + 2} + \\[10pt]+\;\ln\left|x+2 + \sqrt{(x+2)^2 + 2}\right| + C.$$
Since
$$(x+2)^2 + 2 = x^2 + 4x + 6,$$
Final Answer
$$\boxed{\frac{x+2}{2}\sqrt{x^2 + 4x + 6} + \ln\left|x+2 + \sqrt{x^2 + 4x + 6}\right| + C}$$
Get more detailed NCERT and JEE solutions in the expertly curated notes by Anand Classes.
NCERT Question 4: Evaluate the integral
$$\int \sqrt{x^{2}+4x+1}\;dx$$
Solution
$$\int \sqrt{x^{2}+4x+1}\;dx$$
Complete the square inside the root:
$$x^{2}+4x+1=(x+2)^{2}-3.$$
Put
$$y=x+2\quad\Rightarrow\quad dy=dx.$$
The integral becomes
$$\int \sqrt{y^{2}-3}\;dy.$$
Use the standard formula
$$\int \sqrt{y^{2}-a^{2}}\;dy=\frac{y}{2}\sqrt{y^{2}-a^{2}}-\frac{a^{2}}{2}\ln!\bigl|y+\sqrt{y^{2}-a^{2}}\bigr|+C.$$
Here $a^{2}=3$, so
$$\int \sqrt{y^{2}-3}\;dy=\frac{y}{2}\sqrt{y^{2}-3}- \frac{3}{2}\ln!\bigl|y+\sqrt{y^{2}-3}\bigr|+C.$$
Substitute back $y=x+2$:
$$\int \sqrt{x^{2}+4x+1}\;dx
=\frac{x+2}{2}\sqrt{(x+2)^{2}-3}\;-\\[5mm]-\frac{3}{2}\ln!\bigl|x+2+\sqrt{(x+2)^{2}-3}\bigr|+C.$$
Since $(x+2)^{2}-3=x^{2}+4x+1$, the result is
Final Answer
$$\boxed{\;\displaystyle \frac{x+2}{2}\sqrt{x^{2}+4x+1}\;-\;\frac{3}{2}\ln!\bigl|x+2+\sqrt{x^{2}+4x+1}\bigr|+C\;}$$
For more clearly worked NCERT-style integrals and compact notes, check the study material from Anand Classes—ideal for CBSE and JEE preparation.
NCERT Question 5: Evaluate the integral
$$\displaystyle \int \sqrt{1-4x-x^{2}}\;dx$$
Solution
$$\displaystyle \int \sqrt{1-4x-x^{2}}\;dx$$
Complete the square inside the root.
$$1-4x-x^{2}=-(x^{2}+4x-1)= -\bigl((x+2)^{2}-5\bigr)=5-(x+2)^{2}$$
So the integral becomes
$$\displaystyle \int \sqrt{5-(x+2)^{2}}\;dx$$
Put
$$u=x+2\quad\Rightarrow\quad du=dx$$
Then the integral is
$$\displaystyle \int \sqrt{5-u^{2}}\;du$$
Use the standard formula
$$\displaystyle \int \sqrt{a^{2}-u^{2}}\;du=\frac{u}{2}\sqrt{a^{2}-u^{2}}+\frac{a^{2}}{2}\sin^{-1}\frac{u}{a}+C$$
with $a=\sqrt{5}$. Thus
$$\displaystyle \int \sqrt{5-u^{2}}\;du
=\frac{u}{2}\sqrt{5-u^{2}}+\frac{5}{2}\sin^{-1}\frac{u}{\sqrt{5}}+C$$
Substitute back $u=x+2$:
$$\displaystyle \int \sqrt{1-4x-x^{2}}\;dx
=\frac{x+2}{2}\sqrt{5-(x+2)^{2}}+\frac{5}{2}\sin^{-1}\frac{x+2}{\sqrt{5}}+C$$
$$\displaystyle \int \sqrt{1-4x-x^{2}}\;dx
=\frac{x+2}{2}\sqrt{1-4x-x^{2}}+\frac{5}{2}\sin^{-1}\frac{x+2}{\sqrt{5}}+C$$
Final Answer
$$\boxed{\displaystyle \frac{x+2}{2}\sqrt{1-4x-x^{2}}+\frac{5}{2}\sin^{-1}\left(\frac{x+2}{\sqrt{5}}\right)+C}$$
For more clear, exam-focused solutions and complete notes, download study material by Anand Classes—perfect for NCERT, CBSE and JEE practice.
NCERT Question 6: Evaluate the integral
$$\displaystyle \int \sqrt{x^2 + 4x – 5}\; dx$$
Solution
$$\displaystyle \int \sqrt{x^2 + 4x – 5}\; dx$$
Step 1: Rewrite the expression
Complete the square:
$$x^2 + 4x – 5 = x^2 + 4x + 4 – 4 – 5$$
$$= (x+2)^2 – 9$$
So the integral becomes:
$$\int \sqrt{(x+2)^2 – 9}\; dx$$
Step 2: Substitute
Let
$$y = x + 2 \quad \Rightarrow \quad dx = dy$$
Then:
$$\int \sqrt{y^2 – 9}\; dy$$
Step 3: Use the standard formula
For
$$\int \sqrt{y^2 – a^2}\; dy=\frac{y}{2}\sqrt{y^2 – a^2} \;-\; \frac{a^2}{2}\ln\left|y + \sqrt{y^2 – a^2}\right| + C$$
Here $a^2 = 9$ so $a = 3$.
Applying:
$$\int \sqrt{y^2 – 9}\; dy = \frac{y}{2}\sqrt{y^2 – 9} \;-\; \frac{9}{2}\ln\left|y + \sqrt{y^2 – 9}\right| + C$$
Step 4: Substitute back $y = x + 2$
$$\displaystyle \int \sqrt{x^2 + 4x – 5}\; dx = \frac{x+2}{2}\sqrt{(x+2)^2 – 9} \;-\; \frac{9}{2}\ln\left|x+2 + \sqrt{(x+2)^2 – 9}\right| + C$$
Since
$$(x+2)^2 – 9 = x^2 + 4x – 5,$$
$$\displaystyle \int \sqrt{x^2 + 4x – 5}\; dx = \frac{x+2}{2}\sqrt{x^2 + 4x – 5} \;-\; \frac{9}{2}\ln\left|x+2 + \sqrt{x^2 + 4x – 5}\right| + C$$
the final answer becomes:
$$\boxed{\frac{x+2}{2}\sqrt{x^2 + 4x – 5} \;-\; \frac{9}{2}\ln\left|x + 2 + \sqrt{x^2 + 4x – 5}\right| + C}$$
NCERT Question 7: Evaluate the integral
$$\int \sqrt{1+3x-x^{2}}\;dx$$
Solution
$$\int \sqrt{1+3x-x^{2}}\;dx$$
Complete the square inside the radicand:
$$1+3x-x^{2}= -\bigl(x^{2}-3x-1\bigr)
= -\Bigl((x-\frac{3}{2})^{2}-\frac{13}{4}\Bigr)
=\frac{13}{4}-(x-\frac{3}{2})^{2}.$$
Put
$$y=x-\frac{3}{2}$$
so that
$$dy=dx$$
and the integral becomes
$$\int \sqrt{\frac{13}{4}-y^{2}}\;dy.$$
Use the standard formula
$$\int \sqrt{a^{2}-y^{2}}\;dy=\frac{y}{2}\sqrt{a^{2}-y^{2}}+\frac{a^{2}}{2}\sin^{-1}\left(\frac{y}{a}\right)+C.$$
Here $a^{2}=\dfrac{13}{4}$ so $a=\dfrac{\sqrt{13}}{2}$.
Applying the formula:
$$\int \sqrt{\frac{13}{4}-y^{2}}\;dy
=\frac{y}{2}\sqrt{\frac{13}{4}-y^{2}}+\frac{13}{8}\sin^{-1}\left(\frac{2y}{\sqrt{13}}\right)+C.$$
Substitute back $y=x-\dfrac{3}{2}$ and simplify the first factor:
$$\frac{y}{2}\sqrt{\dfrac{13}{4}-y^{2}}
=\frac{x-\dfrac{3}{2}}{2}\sqrt{1+3x-x^{2}}
=\frac{2x-3}{4}\sqrt{1+3x-x^{2}}.$$
Therefore the integral is
$$\boxed{\displaystyle \int \sqrt{1+3x-x^{2}}\;dx
=\frac{2x-3}{4}\sqrt{1+3x-x^{2}}+\frac{13}{8}\sin^{-1}\left(\frac{2x-3}{\sqrt{13}}\right)+C}$$
Build your exam-ready collection — download neatly formatted notes and more solved integrals from Anand Classes, perfect for NCERT revision and ideal practice for CBSE and JEE aspirants.
NCERT Question 8: Evaluate the integral
$$\int \sqrt{x^{2}+3x}\;dx$$
Solution
$$\int \sqrt{x^{2}+3x}\;dx$$
Complete the square:
$$x^{2}+3x=x^{2}+3x+\frac{9}{4}-\frac{9}{4}
=(x+\frac{3}{2})^{2}-\left(\frac{3}{2}\right)^{2}.$$
Put
$$y=x+\dfrac{3}{2}$$
so that
$$dy=dx.$$
The integral becomes
$$\int \sqrt{y^{2}-\left(\frac{3}{2}\right)^{2}}\;dy.$$
Use the standard formula
$$\int \sqrt{y^{2}-a^{2}}\;dy=\frac{y}{2}\sqrt{y^{2}-a^{2}}-\frac{a^{2}}{2}\ln\left|y+\sqrt{y^{2}-a^{2}}\right|+C.$$
Here
$$a=\dfrac{3}{2},\quad a^{2}=\dfrac{9}{4}.$$
Applying the formula:
$$\int \sqrt{y^{2}-\left(\frac{3}{2}\right)^{2}}\;dy
=\frac{y}{2}\sqrt{y^{2}-\frac{9}{4}}-\frac{9}{8}\ln\left|y+\sqrt{y^{2}-\frac{9}{4}}\right|+C.$$
Now substitute back $y=x+\dfrac{3}{2}$:
$$\frac{y}{2}\sqrt{y^{2}-\frac{9}{4}}
=\frac{x+\dfrac{3}{2}}{2}\sqrt{x^{2}+3x}
=\frac{2x+3}{4}\sqrt{x^{2}+3x}.$$
Thus the integral is:
$$\boxed{\displaystyle
\int \sqrt{x^{2}+3x}\;dx
=\frac{2x+3}{4}\sqrt{x^{2}+3x}-\frac{9}{8}\ln\left|x+\frac{3}{2}+\sqrt{x^{2}+3x}\right|+C}$$
Strengthen your NCERT and competitive exam preparation with detailed solved integrals and structured notes from Anand Classes — ideal for CBSE, JEE, and other entrance exams.
NCERT Question 9: Evaluate the integral
$$\int \sqrt{1+\frac{x^{2}}{9}}\;dx$$
Solution
$$\int \sqrt{1+\frac{x^{2}}{9}}\;dx$$
Rewrite the expression:
$$\sqrt{1+\frac{x^{2}}{9}}
=\sqrt{\frac{x^{2}+9}{9}}
=\frac{1}{3}\sqrt{x^{2}+9}.$$
Thus,
$$\int \sqrt{1+\frac{x^{2}}{9}}\;dx
=\frac{1}{3}\int \sqrt{x^{2}+9}\;dx.$$
Use the standard formula
$$\int \sqrt{x^{2}+a^{2}}\;dx
=\frac{x}{2}\sqrt{x^{2}+a^{2}}
+\frac{a^{2}}{2}\ln\left|x+\sqrt{x^{2}+a^{2}}\right|+C.$$
Here
$$a^{2}=9,\quad a=3.$$
Apply the formula:
$$\frac{1}{3}\int \sqrt{x^{2}+9}\;dx=\frac{1}{3}\left[\frac{x}{2}\sqrt{x^{2}+9}
+\frac{9}{2}\ln\left|x+\sqrt{x^{2}+9}\right|\right]+C.$$
Simplify:
$$\frac{1}{3}\int \sqrt{x^{2}+9}\;dx=\frac{x}{6}\sqrt{x^{2}+9}
+\frac{3}{2}\ln\left|x+\sqrt{x^{2}+9}\right|+C.$$
Therefore,
$$\boxed{
\int \sqrt{1+\frac{x^{2}}{9}}\;dx
=\frac{x}{6}\sqrt{x^{2}+9}
+\frac{3}{2}\ln\left|x+\sqrt{x^{2}+9}\right|+C}$$
Boost your exam preparation with expertly solved NCERT integrals and premium study material from Anand Classes — ideal for CBSE boards, JEE preparation, and competitive exams.
NCERT Question 10: Evaluate the integral
$$\int \sqrt{1+x^{2}}\;dx$$
(A) $\frac{x}{2}\sqrt{1+x^{2}}+\frac{1}{2}\ln|x+\sqrt{1+x^{2}}|+C$ $\\$
(B) $\displaystyle \frac{2}{3}(1+x^{2})^{3/2}+C$ $\\$
(C) $\displaystyle \frac{2}{3}x(1+x^{2})^{3/2}+C$ $\\$
(D) $\displaystyle \frac{x^{2}}{2}\sqrt{1+x^{2}}+\frac{1}{2}x^{2}\ln|x+\sqrt{1+x^{2}}|+C$
Solution
$$\int \sqrt{1+x^{2}}\;dx$$
Using the standard formula
$$\int \sqrt{x^{2}+a^{2}}\;dx=\frac{x}{2}\sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2}\ln\left|x+\sqrt{x^{2}+a^{2}}\right|+C,$$
here $(a^{2}=1).$
So,
$$\int \sqrt{1+x^{2}}\;dx
=\frac{x}{2}\sqrt{1+x^{2}}
+\frac{1}{2}\ln\left|x+\sqrt{1+x^{2}}\right|+C.$$
Thus, the correct answer is Option (A).
$$\boxed{\frac{x}{2}\sqrt{1+x^{2}}+\frac{1}{2}\ln|x+\sqrt{1+x^{2}}|+C}$$
Master every NCERT integral with clear, exam-oriented solutions from Anand Classes—ideal for CBSE, JEE, and competitive exam preparation.
NCERT Question 11: Evaluate the integral
$$\int \sqrt{x^{2}-8x+7}\;dx$$
(A) $\displaystyle \frac{1}{2}(x-4)\sqrt{x^{2}-8x+7}+9\ln|x-4+\sqrt{x^{2}-8x+7}|+C$ $\\$
(B) $\displaystyle \frac{1}{2}(x-4)\sqrt{x^{2}-8x+7}+9\ln|x+4+\sqrt{x^{2}-8x+7}|+C$ $\\$
(C) $\displaystyle \frac{1}{2}(x-4)\sqrt{x^{2}-8x+7}-3\sqrt{2}\ln|x-4+\sqrt{x^{2}-8x+7}|+C$ $\\$
(D) $\displaystyle \frac{1}{2}(x-4)\sqrt{x^{2}-8x+7}-\frac{9}{2}\ln|x-4+\sqrt{x^{2}-8x+7}|+C$ $\\$
Solution
$$\int \sqrt{x^{2}-8x+7}\;dx$$
Completing the square:
$$x^{2}-8x+7=(x-4)^{2}-9.$$
Let
$$y=x-4 \;dx=dy.$$
Then,
$$\int \sqrt{x^{2}-8x+7}\;dx=\int \sqrt{y^{2}-3^{2}}\;dy.$$
Using the standard formula
$$\int \sqrt{y^{2}-a^{2}}\;dy=\frac{y}{2}\sqrt{y^{2}-a^{2}}-\frac{a^{2}}{2}\ln\left|y+\sqrt{y^{2}-a^{2}}\right|+C,$$
with $(a=3)$:
$$\int \sqrt{y^{2}-3^{2}}\;dy=\frac{y}{2}\sqrt{y^{2}-9}-\frac{9}{2}\ln|y+\sqrt{y^{2}-9}|+C.$$
Substituting back $(y=x-4)$:
$$\int \sqrt{x^{2}-8x+7}\;dx=\frac{1}{2}(x-4)\sqrt{x^{2}-8x+7}-\\[0.75em] -\frac{9}{2}\ln|x-4+\sqrt{x^{2}-8x+7}|+C$$
The final Answer :
$$\boxed{\frac{1}{2}(x-4)\sqrt{x^{2}-8x+7}-\frac{9}{2}\ln|x-4+\sqrt{x^{2}-8x+7}|+C}$$
Thus, the correct answer is Option (D).
Enhance your NCERT and JEE preparation with expertly structured solutions from Anand Classes—perfect for board exams and competitive exams.


