Latest
Admissions open for Class 11 New test series launched Free demo classes every Sunday

Learn

[custom_field_dropdown]

Integrals NCERT Solutions Exercise 7.7 Chapter-7 Class 12 Math Notes PDF Free Download

⭐⭐⭐⭐⭐ (5/5 from 85209 reviews)

NCERT Question 1: Evaluate the integral
$$\int \sqrt{4 – x^{2}}\;dx$$

Solution

$$\int \sqrt{4 – x^{2}}\;dx$$

Rewrite the integrand as:
$$\sqrt{4 – x^{2}} = \sqrt{2^{2} – x^{2}}$$

Use the standard formula:
$$\int \sqrt{a^{2} – x^{2}}\;dx = \frac{x}{2}\sqrt{a^{2} – x^{2}} + \frac{a^{2}}{2}\sin^{-1}\left(\frac{x}{a}\right) + C$$

Here, (a = 2). Substitute into the formula:

$$\int \sqrt{4 – x^{2}}\;dx = \frac{x}{2}\sqrt{4 – x^{2}} + \frac{4}{2}\sin^{-1}\left(\frac{x}{2}\right) + C$$

Simplify:

$$\int \sqrt{4 – x^{2}}\;dx = \frac{x}{2}\sqrt{4 – x^{2}} + 2\sin^{-1}\left(\frac{x}{2}\right) + C$$

Final Answer

$$\boxed{\frac{x}{2}\sqrt{4 – x^{2}} + 2\sin^{-1}\left(\frac{x}{2}\right) + C}$$

Strengthen your understanding of integration with detailed solutions from Anand Classes, ideal for CBSE and JEE aspirants who want clear and accurate explanations.


NCERT Question 2: Evaluate the integral
$$\int \sqrt{1 – 4x^2}\;dx$$

Solution

We rewrite the integral as
$$\int \sqrt{1 – (2x)^2}\;dx$$

Let
$$2x = y \quad\Rightarrow\quad 2\;dx = dy \quad\Rightarrow\quad dx = \frac{dy}{2}$$

So the integral becomes
$$\frac{1}{2}\int \sqrt{1 – y^2}\;dy$$

Using the standard result
$$\int \sqrt{1 – y^2}\;dy = \frac{y}{2}\sqrt{1 – y^2} + \frac{1}{2}\sin^{-1}(y) + C$$

we get
$$\frac{1}{2}\int \sqrt{1 – y^2}\;dy=\frac{1}{2}\left[\frac{y}{2}\sqrt{1 – y^2} + \frac{1}{2}\sin^{-1}(y)\right] + C$$

Now substitute $(y = 2x)$:
$$\int \sqrt{1 – (2x)^2}\;dx=\frac{1}{2}\left[\frac{2x}{2}\sqrt{1 – (2x)^2} + \frac{1}{2}\sin^{-1}(2x)\right] + C$$

Simplifying,
$$\int \sqrt{1 – (2x)^2}\;dx=\frac{x}{2}\sqrt{1 – 4x^2} + \frac{1}{4}\sin^{-1}(2x) + C$$

Final Answer
$$\boxed{\frac{x}{2}\sqrt{1 – 4x^2} + \frac{1}{4}\sin^{-1}(2x) + C}$$

Strengthen your preparation with expertly formatted solutions and premium study material by Anand Classes for CBSE and JEE.


NCERT Question.3: Evaluate the integral
$$\int \sqrt{x^2 + 4x + 6}\;dx$$

Solution

$$\int \sqrt{x^2 + 4x + 6}\;dx$$

Rewrite the expression inside the root:

$$x^2 + 4x + 6 = (x+2)^2 + (\sqrt{2})^2$$

So the integral becomes
$$\int \sqrt{(x+2)^2 + (\sqrt{2})^2}\;dx$$

Let
$$(x+2)=y \quad\Rightarrow\quad dx = dy$$

Thus,
$$\int \sqrt{y^2 + (\sqrt{2})^2}\;dy$$

Using the standard formula
$$\int \sqrt{y^2 + a^2}\;dy = \frac{y}{2}\sqrt{y^2 + a^2} + \frac{a^2}{2}\ln\left|y + \sqrt{y^2 + a^2}\right| + C,$$

we get
$$\int \sqrt{y^2 + (\sqrt{2})^2}\;dy = \frac{y}{2}\sqrt{y^2 + 2} + \ln\left|y + \sqrt{y^2 + 2}\right| + C.$$

Substitute back $(y = x+2)$:

$$\int \sqrt{x^2 + 4x + 6}\;dx=\frac{x+2}{2}\sqrt{(x+2)^2 + 2} + \\[10pt]+\;\ln\left|x+2 + \sqrt{(x+2)^2 + 2}\right| + C.$$

Since
$$(x+2)^2 + 2 = x^2 + 4x + 6,$$

Final Answer
$$\boxed{\frac{x+2}{2}\sqrt{x^2 + 4x + 6} + \ln\left|x+2 + \sqrt{x^2 + 4x + 6}\right| + C}$$

Get more detailed NCERT and JEE solutions in the expertly curated notes by Anand Classes.


NCERT Question 4: Evaluate the integral
$$\int \sqrt{x^{2}+4x+1}\;dx$$

Solution

$$\int \sqrt{x^{2}+4x+1}\;dx$$

Complete the square inside the root:
$$x^{2}+4x+1=(x+2)^{2}-3.$$

Put
$$y=x+2\quad\Rightarrow\quad dy=dx.$$

The integral becomes
$$\int \sqrt{y^{2}-3}\;dy.$$

Use the standard formula
$$\int \sqrt{y^{2}-a^{2}}\;dy=\frac{y}{2}\sqrt{y^{2}-a^{2}}-\frac{a^{2}}{2}\ln!\bigl|y+\sqrt{y^{2}-a^{2}}\bigr|+C.$$
Here $a^{2}=3$, so
$$\int \sqrt{y^{2}-3}\;dy=\frac{y}{2}\sqrt{y^{2}-3}- \frac{3}{2}\ln!\bigl|y+\sqrt{y^{2}-3}\bigr|+C.$$

Substitute back $y=x+2$:
$$\int \sqrt{x^{2}+4x+1}\;dx
=\frac{x+2}{2}\sqrt{(x+2)^{2}-3}\;-\\[5mm]-\frac{3}{2}\ln!\bigl|x+2+\sqrt{(x+2)^{2}-3}\bigr|+C.$$

Since $(x+2)^{2}-3=x^{2}+4x+1$, the result is

Final Answer

$$\boxed{\;\displaystyle \frac{x+2}{2}\sqrt{x^{2}+4x+1}\;-\;\frac{3}{2}\ln!\bigl|x+2+\sqrt{x^{2}+4x+1}\bigr|+C\;}$$

For more clearly worked NCERT-style integrals and compact notes, check the study material from Anand Classes—ideal for CBSE and JEE preparation.


NCERT Question 5: Evaluate the integral
$$\displaystyle \int \sqrt{1-4x-x^{2}}\;dx$$

Solution

$$\displaystyle \int \sqrt{1-4x-x^{2}}\;dx$$

Complete the square inside the root.
$$1-4x-x^{2}=-(x^{2}+4x-1)= -\bigl((x+2)^{2}-5\bigr)=5-(x+2)^{2}$$

So the integral becomes
$$\displaystyle \int \sqrt{5-(x+2)^{2}}\;dx$$

Put
$$u=x+2\quad\Rightarrow\quad du=dx$$

Then the integral is
$$\displaystyle \int \sqrt{5-u^{2}}\;du$$

Use the standard formula
$$\displaystyle \int \sqrt{a^{2}-u^{2}}\;du=\frac{u}{2}\sqrt{a^{2}-u^{2}}+\frac{a^{2}}{2}\sin^{-1}\frac{u}{a}+C$$
with $a=\sqrt{5}$. Thus

$$\displaystyle \int \sqrt{5-u^{2}}\;du
=\frac{u}{2}\sqrt{5-u^{2}}+\frac{5}{2}\sin^{-1}\frac{u}{\sqrt{5}}+C$$

Substitute back $u=x+2$:

$$\displaystyle \int \sqrt{1-4x-x^{2}}\;dx
=\frac{x+2}{2}\sqrt{5-(x+2)^{2}}+\frac{5}{2}\sin^{-1}\frac{x+2}{\sqrt{5}}+C$$

$$\displaystyle \int \sqrt{1-4x-x^{2}}\;dx
=\frac{x+2}{2}\sqrt{1-4x-x^{2}}+\frac{5}{2}\sin^{-1}\frac{x+2}{\sqrt{5}}+C$$

Final Answer

$$\boxed{\displaystyle \frac{x+2}{2}\sqrt{1-4x-x^{2}}+\frac{5}{2}\sin^{-1}\left(\frac{x+2}{\sqrt{5}}\right)+C}$$

For more clear, exam-focused solutions and complete notes, download study material by Anand Classes—perfect for NCERT, CBSE and JEE practice.


NCERT Question 6: Evaluate the integral
$$\displaystyle \int \sqrt{x^2 + 4x – 5}\; dx$$

Solution

$$\displaystyle \int \sqrt{x^2 + 4x – 5}\; dx$$

Step 1: Rewrite the expression

Complete the square:

$$x^2 + 4x – 5 = x^2 + 4x + 4 – 4 – 5$$

$$= (x+2)^2 – 9$$

So the integral becomes:

$$\int \sqrt{(x+2)^2 – 9}\; dx$$

Step 2: Substitute

Let
$$y = x + 2 \quad \Rightarrow \quad dx = dy$$

Then:

$$\int \sqrt{y^2 – 9}\; dy$$

Step 3: Use the standard formula

For
$$\int \sqrt{y^2 – a^2}\; dy=\frac{y}{2}\sqrt{y^2 – a^2} \;-\; \frac{a^2}{2}\ln\left|y + \sqrt{y^2 – a^2}\right| + C$$

Here $a^2 = 9$ so $a = 3$.

Applying:

$$\int \sqrt{y^2 – 9}\; dy = \frac{y}{2}\sqrt{y^2 – 9} \;-\; \frac{9}{2}\ln\left|y + \sqrt{y^2 – 9}\right| + C$$

Step 4: Substitute back $y = x + 2$

$$\displaystyle \int \sqrt{x^2 + 4x – 5}\; dx = \frac{x+2}{2}\sqrt{(x+2)^2 – 9} \;-\; \frac{9}{2}\ln\left|x+2 + \sqrt{(x+2)^2 – 9}\right| + C$$

Since
$$(x+2)^2 – 9 = x^2 + 4x – 5,$$

$$\displaystyle \int \sqrt{x^2 + 4x – 5}\; dx = \frac{x+2}{2}\sqrt{x^2 + 4x – 5} \;-\; \frac{9}{2}\ln\left|x+2 + \sqrt{x^2 + 4x – 5}\right| + C$$

the final answer becomes:

$$\boxed{\frac{x+2}{2}\sqrt{x^2 + 4x – 5} \;-\; \frac{9}{2}\ln\left|x + 2 + \sqrt{x^2 + 4x – 5}\right| + C}$$


NCERT Question 7: Evaluate the integral
$$\int \sqrt{1+3x-x^{2}}\;dx$$

Solution

$$\int \sqrt{1+3x-x^{2}}\;dx$$

Complete the square inside the radicand:
$$1+3x-x^{2}= -\bigl(x^{2}-3x-1\bigr)
= -\Bigl((x-\frac{3}{2})^{2}-\frac{13}{4}\Bigr)
=\frac{13}{4}-(x-\frac{3}{2})^{2}.$$

Put
$$y=x-\frac{3}{2}$$
so that
$$dy=dx$$
and the integral becomes
$$\int \sqrt{\frac{13}{4}-y^{2}}\;dy.$$

Use the standard formula
$$\int \sqrt{a^{2}-y^{2}}\;dy=\frac{y}{2}\sqrt{a^{2}-y^{2}}+\frac{a^{2}}{2}\sin^{-1}\left(\frac{y}{a}\right)+C.$$

Here $a^{2}=\dfrac{13}{4}$ so $a=\dfrac{\sqrt{13}}{2}$.

Applying the formula:
$$\int \sqrt{\frac{13}{4}-y^{2}}\;dy
=\frac{y}{2}\sqrt{\frac{13}{4}-y^{2}}+\frac{13}{8}\sin^{-1}\left(\frac{2y}{\sqrt{13}}\right)+C.$$

Substitute back $y=x-\dfrac{3}{2}$ and simplify the first factor:
$$\frac{y}{2}\sqrt{\dfrac{13}{4}-y^{2}}
=\frac{x-\dfrac{3}{2}}{2}\sqrt{1+3x-x^{2}}
=\frac{2x-3}{4}\sqrt{1+3x-x^{2}}.$$

Therefore the integral is

$$\boxed{\displaystyle \int \sqrt{1+3x-x^{2}}\;dx
=\frac{2x-3}{4}\sqrt{1+3x-x^{2}}+\frac{13}{8}\sin^{-1}\left(\frac{2x-3}{\sqrt{13}}\right)+C}$$

Build your exam-ready collection — download neatly formatted notes and more solved integrals from Anand Classes, perfect for NCERT revision and ideal practice for CBSE and JEE aspirants.


NCERT Question 8: Evaluate the integral
$$\int \sqrt{x^{2}+3x}\;dx$$

Solution

$$\int \sqrt{x^{2}+3x}\;dx$$

Complete the square:
$$x^{2}+3x=x^{2}+3x+\frac{9}{4}-\frac{9}{4}
=(x+\frac{3}{2})^{2}-\left(\frac{3}{2}\right)^{2}.$$

Put
$$y=x+\dfrac{3}{2}$$
so that
$$dy=dx.$$

The integral becomes
$$\int \sqrt{y^{2}-\left(\frac{3}{2}\right)^{2}}\;dy.$$

Use the standard formula
$$\int \sqrt{y^{2}-a^{2}}\;dy=\frac{y}{2}\sqrt{y^{2}-a^{2}}-\frac{a^{2}}{2}\ln\left|y+\sqrt{y^{2}-a^{2}}\right|+C.$$

Here
$$a=\dfrac{3}{2},\quad a^{2}=\dfrac{9}{4}.$$

Applying the formula:

$$\int \sqrt{y^{2}-\left(\frac{3}{2}\right)^{2}}\;dy
=\frac{y}{2}\sqrt{y^{2}-\frac{9}{4}}-\frac{9}{8}\ln\left|y+\sqrt{y^{2}-\frac{9}{4}}\right|+C.$$

Now substitute back $y=x+\dfrac{3}{2}$:

$$\frac{y}{2}\sqrt{y^{2}-\frac{9}{4}}
=\frac{x+\dfrac{3}{2}}{2}\sqrt{x^{2}+3x}
=\frac{2x+3}{4}\sqrt{x^{2}+3x}.$$

Thus the integral is:

$$\boxed{\displaystyle
\int \sqrt{x^{2}+3x}\;dx
=\frac{2x+3}{4}\sqrt{x^{2}+3x}-\frac{9}{8}\ln\left|x+\frac{3}{2}+\sqrt{x^{2}+3x}\right|+C}$$

Strengthen your NCERT and competitive exam preparation with detailed solved integrals and structured notes from Anand Classes — ideal for CBSE, JEE, and other entrance exams.


NCERT Question 9: Evaluate the integral
$$\int \sqrt{1+\frac{x^{2}}{9}}\;dx$$

Solution

$$\int \sqrt{1+\frac{x^{2}}{9}}\;dx$$

Rewrite the expression:
$$\sqrt{1+\frac{x^{2}}{9}}
=\sqrt{\frac{x^{2}+9}{9}}
=\frac{1}{3}\sqrt{x^{2}+9}.$$

Thus,
$$\int \sqrt{1+\frac{x^{2}}{9}}\;dx
=\frac{1}{3}\int \sqrt{x^{2}+9}\;dx.$$

Use the standard formula
$$\int \sqrt{x^{2}+a^{2}}\;dx
=\frac{x}{2}\sqrt{x^{2}+a^{2}}
+\frac{a^{2}}{2}\ln\left|x+\sqrt{x^{2}+a^{2}}\right|+C.$$

Here
$$a^{2}=9,\quad a=3.$$

Apply the formula:

$$\frac{1}{3}\int \sqrt{x^{2}+9}\;dx=\frac{1}{3}\left[\frac{x}{2}\sqrt{x^{2}+9}
+\frac{9}{2}\ln\left|x+\sqrt{x^{2}+9}\right|\right]+C.$$

Simplify:
$$\frac{1}{3}\int \sqrt{x^{2}+9}\;dx=\frac{x}{6}\sqrt{x^{2}+9}
+\frac{3}{2}\ln\left|x+\sqrt{x^{2}+9}\right|+C.$$

Therefore,

$$\boxed{
\int \sqrt{1+\frac{x^{2}}{9}}\;dx
=\frac{x}{6}\sqrt{x^{2}+9}
+\frac{3}{2}\ln\left|x+\sqrt{x^{2}+9}\right|+C}$$

Boost your exam preparation with expertly solved NCERT integrals and premium study material from Anand Classes — ideal for CBSE boards, JEE preparation, and competitive exams.


NCERT Question 10: Evaluate the integral
$$\int \sqrt{1+x^{2}}\;dx$$
(A) $\frac{x}{2}\sqrt{1+x^{2}}+\frac{1}{2}\ln|x+\sqrt{1+x^{2}}|+C$ $\\$
(B) $\displaystyle \frac{2}{3}(1+x^{2})^{3/2}+C$ $\\$
(C) $\displaystyle \frac{2}{3}x(1+x^{2})^{3/2}+C$ $\\$
(D) $\displaystyle \frac{x^{2}}{2}\sqrt{1+x^{2}}+\frac{1}{2}x^{2}\ln|x+\sqrt{1+x^{2}}|+C$

Solution

$$\int \sqrt{1+x^{2}}\;dx$$

Using the standard formula
$$\int \sqrt{x^{2}+a^{2}}\;dx=\frac{x}{2}\sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2}\ln\left|x+\sqrt{x^{2}+a^{2}}\right|+C,$$
here $(a^{2}=1).$

So,
$$\int \sqrt{1+x^{2}}\;dx
=\frac{x}{2}\sqrt{1+x^{2}}
+\frac{1}{2}\ln\left|x+\sqrt{1+x^{2}}\right|+C.$$

Thus, the correct answer is Option (A).

$$\boxed{\frac{x}{2}\sqrt{1+x^{2}}+\frac{1}{2}\ln|x+\sqrt{1+x^{2}}|+C}$$

Master every NCERT integral with clear, exam-oriented solutions from Anand Classes—ideal for CBSE, JEE, and competitive exam preparation.


NCERT Question 11: Evaluate the integral
$$\int \sqrt{x^{2}-8x+7}\;dx$$
(A) $\displaystyle \frac{1}{2}(x-4)\sqrt{x^{2}-8x+7}+9\ln|x-4+\sqrt{x^{2}-8x+7}|+C$ $\\$
(B) $\displaystyle \frac{1}{2}(x-4)\sqrt{x^{2}-8x+7}+9\ln|x+4+\sqrt{x^{2}-8x+7}|+C$ $\\$
(C) $\displaystyle \frac{1}{2}(x-4)\sqrt{x^{2}-8x+7}-3\sqrt{2}\ln|x-4+\sqrt{x^{2}-8x+7}|+C$ $\\$
(D) $\displaystyle \frac{1}{2}(x-4)\sqrt{x^{2}-8x+7}-\frac{9}{2}\ln|x-4+\sqrt{x^{2}-8x+7}|+C$ $\\$

Solution

$$\int \sqrt{x^{2}-8x+7}\;dx$$

Completing the square:
$$x^{2}-8x+7=(x-4)^{2}-9.$$

Let
$$y=x-4 \;dx=dy.$$

Then,
$$\int \sqrt{x^{2}-8x+7}\;dx=\int \sqrt{y^{2}-3^{2}}\;dy.$$

Using the standard formula
$$\int \sqrt{y^{2}-a^{2}}\;dy=\frac{y}{2}\sqrt{y^{2}-a^{2}}-\frac{a^{2}}{2}\ln\left|y+\sqrt{y^{2}-a^{2}}\right|+C,$$

with $(a=3)$:

$$\int \sqrt{y^{2}-3^{2}}\;dy=\frac{y}{2}\sqrt{y^{2}-9}-\frac{9}{2}\ln|y+\sqrt{y^{2}-9}|+C.$$

Substituting back $(y=x-4)$:

$$\int \sqrt{x^{2}-8x+7}\;dx=\frac{1}{2}(x-4)\sqrt{x^{2}-8x+7}-\\[0.75em] -\frac{9}{2}\ln|x-4+\sqrt{x^{2}-8x+7}|+C$$

The final Answer :

$$\boxed{\frac{1}{2}(x-4)\sqrt{x^{2}-8x+7}-\frac{9}{2}\ln|x-4+\sqrt{x^{2}-8x+7}|+C}$$

Thus, the correct answer is Option (D).

Enhance your NCERT and JEE preparation with expertly structured solutions from Anand Classes—perfect for board exams and competitive exams.

📚 Buy Study Material & Join Our Coaching

For premium study materials specially designed for JEE, NEET, NDA, CDS, AFCAT, SSC Exams, visit our official study material portal:
👉 https://publishers.anandclasses.co.in/

For JEE/NEET Notes : Visit https://anandclasses.org.in/

For NDA Notes : Visit https://nda.anandclasses.org.in/

For SSC Notes : Visit https://ssc.anandclasses.org.in/

For CDS, AFCAT Notes : Visit https://cds-afcat.anandclasses.org.in/

To enroll in our offline or online coaching programs, visit our coaching center website:
👉 https://anandclasses.co.in/

📞 Call us directly at: +91-94631-38669

💬 WhatsApp Us Instantly

Need quick assistance or want to inquire about classes and materials?

📲 Click below to chat instantly on WhatsApp:
👉 Chat on WhatsApp

🎥 Watch Video Lectures

Get access to high-quality video lessons, concept explainers, and revision tips by subscribing to our official YouTube channel:
👉 Neeraj Anand Classes – YouTube Channel

RELATED TOPICS