Trigonometric Identities Class 10 – Solved Problems & Examples


Prove the following Trigonometric Identities:

1. (1 – cos2 A) cosec2 A = 1

Solution:

Taking the L.H.S.,

(1 – cos2 A) cosec2 A

= (sin2 A) cosec2 A [∵ sin2 A + cosA = 1 ⇒1 – sin2 A = cos2 A]

= 12

= 1 = R.H.S.

– Hence, proved.


2. (1 + cot2 A) sin2 A = 1 

Solution: 

By using the identity,

cosecA – cot2 A = 1 ⇒ cosecA = cot2 A + 1

Taking,

L.H.S. = (1 + cot2 A) sin2 A

= cosec2 A sin2 A

= (cosec A sin A)2

= ((1/sin A) × sin A)2

= (1)2

= 1

= R.H.S.

– Hence, proved.


3. tanθ cosθ = 1 − cosθ 

Solution: 

We know that,

sinθ + cosθ = 1

Taking,

L.H.S. = tanθ cosθ

= (tan θ × cos θ)2

= (sin θ)2

= sinθ

= 1 – cosθ

= R.H.S.

– Hence, proved.


4. cosec θ √(1 – cos2 θ) = 1

Solution:

Using identity,

sinθ + cosθ = 1  ⇒ sinθ = 1 – cosθ

Taking L.H.S.,

L.H.S = cosec θ √(1 – cos2 θ)

= cosec θ √( sinθ)

= cosec θ x sin θ

= 1

= R.H.S.

– Hence, proved.


5. (secθ − 1)(cosecθ − 1) = 1 

Solution:

Using identities,

(secθ − tanθ) = 1 and (cosecθ − cotθ) = 1

We have,

L.H.S. = (secθ – 1)(cosec2θ – 1)

= tan2θ × cot2θ

= (tan θ × cot θ)2

= (tan θ × 1/tan θ)2

= 12

= 1

= R.H.S.

– Hence, proved.


6. tan θ + 1/ tan θ = sec θ cosec θ

Solution:

We have,

L.H.S. = tan θ + 1/ tan θ

= (tan2 θ + 1)/ tan θ

= sec2 θ / tan θ [∵ secθ − tanθ = 1]

= (1/cos2 θ) x 1/ (sin θ/cos θ) [∵ tan θ = sin θ / cos θ]

= cos θ/ (sin θ x cos2 θ)

= 1/ cos θ x 1/ sin θ

= sec θ x cosec θ

= sec θ cosec θ

= R.H.S.

– Hence, proved.


7. cos θ/ (1 – sin θ) = (1 + sin θ)/ cos θ

Solution:

We know that,

sinθ + cosθ = 1

So, by multiplying both the numerator and the denominator by (1+ sin θ), we get

$$ \frac{\cos \theta}{1 – \sin \theta}
= \frac{\cos \theta (1 + \sin \theta)}{(1 – \sin \theta)(1 + \sin \theta)}
$$
$$
= \frac{\cos \theta(1 + \sin \theta)}{(1 – \sin^2 \theta)}
$$
$$
= \frac{\cos \theta (1 + \sin \theta)}{\cos^2 \theta}
$$
$$
= \frac{1 + \sin \theta}{\cos \theta}
$$

$$\frac{\cos \theta}{1 – \sin \theta}= \frac{1 + \sin \theta}{\cos \theta}$$

L.H.S. = R.H.S.

– Hence, proved.


8. cos θ/ (1 + sin θ) = (1 – sin θ)/ cos θ

Solution:

We know that,

sinθ + cosθ = 1

So, by multiplying both the numerator and the denominator by (1- sin θ), we get

$$
\frac{\cos \theta}{1 + \sin \theta}
= \frac{\cos \theta (1 – \sin \theta)}{(1 + \sin \theta)(1 – \sin \theta)}
$$
$$
= \frac{\cos \theta (1 – \sin \theta)}{1 – \sin^2 \theta}
$$
$$
= \frac{\cos \theta (1 – \sin \theta)}{\cos^2 \theta}
$$
$$
= \frac{(1 – \sin \theta)}{\cos \theta}
$$
$$
\frac{\cos \theta}{1 + \sin \theta}
= \frac{1 – \sin \theta}{\cos \theta}
$$

L.H.S. = R.H.S.

– Hence, proved.


9. cosA + 1/(1 + cotA) = 1

Solution:

We already know that,

cosecA − cotA = 1 and sinA + cosA = 1

Taking L.H.S.,

$$
\text{L.H.S} = \cos^2 A + \frac{1}{1 + \cot^2 A}
$$
$$
= \cos^2 A + \frac{1}{\csc^2 A}
$$
$$
= \cos^2 A + \left( \frac{1}{\csc A} \right)^2
$$

= cos2 A + sin2 A = 1 = R.H.S.

– Hence, proved.


10. sinA + 1/(1 + tan A) = 1

Solution:

We already know that,

secθ − tanθ = 1 and sinθ + cosθ = 1

Taking L.H.S.,

$$
\text{L.H.S} = \sin^2 A + \frac{1}{1 + \tan^2 A}
$$
$$
= \sin^2 A + \frac{1}{\sec^2 A}
$$
$$
= \sin^2 A + \left( \frac{1}{\sec A} \right)^2
$$

= sin2 A + cos2 A = 1 = R.H.S.

– Hence, proved.


11.

$$\sqrt{\frac{1 – \cos \theta}{1 + \cos \theta}} $$

= cosec θ – cot θ

Solution:

We know that,

sinθ + cosθ = 1

Taking the L.H.S.,

$$
\text{L.H.S} = \sqrt{\frac{1 – \cos \theta}{1 + \cos \theta}}
$$
$$
= \sqrt{\frac{(1 – \cos \theta)(1 – \cos \theta)}{(1 + \cos \theta)(1 – \cos \theta)}}
$$
$$
= \sqrt{\frac{(1 – \cos \theta)^2}{1 – \cos^2 \theta}}
$$
$$
= \sqrt{\frac{(1 – \cos \theta)^2}{\sin^2 \theta}}
$$
$$
= \frac{1 – \cos \theta}{\sin \theta}
$$
$$
= \frac{1}{\sin \theta} – \frac{\cos \theta}{\sin \theta}
$$

= cosec θ – cot θ = R.H.S.

– Hence, proved.


12. 1 – cos θ/ sin θ = sin θ/ 1 + cos θ

Solution:

We know that,

sinθ + cosθ = 1

So, by multiplying both the numerator and the denominator by (1+ cos θ), we get

$$
\text{L.H.S} = \frac{1 – \cos^2 \theta}{(1 + \cos \theta)(\sin \theta)}
$$
$$
= \frac{\sin^2 \theta}{(1 + \cos \theta)(\sin \theta)}
$$
$$
= \frac{\sin \theta}{1 + \cos \theta}
$$

= R.H.S.

– Hence, proved.


13. sin θ/ (1 – cos θ) = cosec θ + cot θ

Solution:

Taking L.H.S.,

$$
\text{L.H.S} = \frac{\sin \theta}{1 – \cos \theta}
$$

On multiplying by its conjugate, we have

$$
= \frac{\sin \theta}{1 – \cos \theta} \times \frac{1 + \cos \theta}{1 + \cos \theta}
$$

$$
= \frac{\sin \theta (1 + \cos \theta)}{1 – \cos^2 \theta}
$$

$$
= \frac{\sin \theta + (\sin \theta \times \cos \theta)}{\sin^2 \theta}
$$

$$
= \frac{\sin \theta}{\sin^2 \theta} + \frac{\sin \theta \times \cos \theta}{\sin^2 \theta}
$$

$$
= \frac{1}{\sin \theta} + \frac{\cos \theta}{\sin \theta}
$$

= cosec θ + cot θ = R.H.S.

– Hence, proved.


14. (1 – sin θ) / (1 + sin θ) = (sec θ – tan θ)2

Solution:

Taking the L.H.S.,

$$
\text{L.H.S} = \frac{1 – \sin \theta}{1 + \sin \theta}
$$

On multiplying by its conjugate, we have

$$
= \frac{1 – \sin \theta}{1 + \sin \theta} \times \frac{1 – \sin \theta}{1 – \sin \theta}
$$

$$
= \frac{(1 – \sin \theta)(1 – \sin \theta)}{1 – \sin^2 \theta}
$$

$$
= \frac{(1 – \sin \theta)^2}{\cos^2 \theta}
$$

$$
= \left( \frac{1 – \sin \theta}{\cos \theta} \right)^2
$$

$$
= \left( \frac{1}{\cos \theta} – \frac{\sin \theta}{\cos \theta} \right)^2
$$

= (sec θ – tan θ)2 = R.H.S.

– Hence, proved.


15. tanθ − sinθ = tanθ sinθ 

Solution:

Taking L.H.S.,

L.H.S = tanθ − sinθ 

$$
= \frac{\sin^2 \theta}{\cos^2 \theta} – \sin^2 \theta
$$

$$
= \sin^2 \theta \left( \frac{1}{\cos^2 \theta} – 1 \right)
$$

$$
= \sin^2 \theta \left( \frac{1 – \cos^2 \theta}{\cos^2 \theta} \right)
$$

$$
= \sin^2 \theta \left( \frac{\sin^2 \theta}{\cos^2 \theta} \right)
$$

= sinθ tanθ = R.H.S.

– Hence, proved.


16. (cosec θ + sin θ)(cosec θ – sin θ) = cot2θ + cos2θ 

Solution:

Taking L.H.S. = (cosec θ + sin θ)(cosec θ – sin θ)

On multiplying, we get

= cosec2 θ – sin2 θ

= (1 + cot2 θ) – (1 – cos2 θ) [Using cosecθ − cotθ = 1 and sinθ + cosθ = 1]

= 1 + cot2 θ – 1 + cos2 θ

= cot2 θ + cos2 θ

= R.H.S.

– Hence, proved.


17. (sec θ + cos θ) (sec θ – cos θ) = tanθ + sinθ 

Solution:

Taking L.H.S. = (sec θ + cos θ)(sec θ – cos θ)

On multiplying, we get,

= sec2 θ – cos2 θ

= (1 + tan2 θ) – (1 – sin2 θ) [Using secθ − tanθ = 1 and sinθ + cosθ = 1]

= 1 + tan2 θ – 1 + sin2 θ

= tan θ + sin 2 θ

= R.H.S.

– Hence, proved.


18. sec A(1- sin A) (sec A + tan A) = 1

Solution:

Taking L.H.S. = sec A(1 – sin A)(sec A + tan A)

Substituting sec A = 1/cos A and tan A =sin A/cos A in the above, we have,

L.H.S = 1/cos A (1 – sin A)(1/cos A + sin A/cos A)

= 1 – sin2 A / cos2 A [After taking L.C.M]

= cos2 A / cos2 A [∵ 1 – sin2 A = cos2 A]

= 1

= R.H.S.

– Hence, proved.


19. (cosec A – sin A)(sec A – cos A)(tan A + cot A) = 1 

Solution:

Taking L.H.S. = (cosec A – sin A)(sec A – cos A)(tan A + cot A)

$$
= \left( \frac{1}{\sin A} – \sin A \right) \left( \frac{1}{\cos A} – \cos A \right) \left( \frac{\sin A}{\cos A} + \frac{\cos A}{\sin A} \right)
$$

$$
= \left( \frac{1 – \sin^2 A}{\sin A} \right) \left( \frac{1 – \cos^2 A}{\cos A} \right) \left( \frac{\sin^2 A + \cos^2 A}{\sin A \cos A} \right)
$$

= (cos2 A/ sin A) (sin2 A/ cos A) (1/ sin A cos A) [∵ sinθ + cosθ = 1]

= (sin A  cos A)  (1/ cos A sin A)

= 1

= R.H.S.

– Hence, proved.


20. (1 + tanθ)(1 – sin θ)(1 + sin θ) = 1

Solution:

Taking L.H.S. = (1 + tan2θ)(1 – sin θ)(1 + sin θ)

And, we know sin2 θ + cos2 θ = 1 and sec2 θ – tan2 θ = 1

So,

L.H.S = (1 + tan2 θ)(1 – sin θ)(1 + sin θ)

= (1 + tanθ){(1 – sin θ)(1 + sin θ)}

= (1 + tanθ)(1 – sinθ)

= secθ (cos2 θ)

= (1/ cos2 θ) x cos2 θ

= 1

= R.H.S.

– Hence, proved.


21. sinA cotA + cosA tanA = 1

Solution:

We know that,

cotA = cosA/ sin2 A and tan2 A = sin2 A/cos2 A

Substituting the above in L.H.S., we get

L.H.S = sinA cotA + cosA tanA

= {sinA (cosA/ sin2 A)} + {cosA (sin2 A/cos2 A)}

= cosA + sin2 A

= 1 [∵ sinθ + cosθ = 1]

= R.H.S.

– Hence, proved.


22. (cos2 θ/ sin θ) – cosec θ + sin θ = 0

Solution:

Taking L.H.S. and using sinθ + cosθ = 1, we have

$$
\text{L.H.S} = \frac{\cos^2 \theta}{\sin \theta} – \csc \theta + \sin \theta
$$

$$
= \left( \frac{\cos^2 \theta}{\sin \theta} – \csc \theta \right) + \sin \theta
$$

$$
= \left( \frac{\cos^2 \theta}{\sin \theta} – \frac{1}{\sin \theta} \right) + \sin \theta
$$

$$
= \left( \frac{\cos^2 \theta – 1}{\sin \theta} \right) + \sin \theta
$$

$$
= \left( \frac{-\sin^2 \theta}{\sin \theta} \right) + \sin \theta
$$

= – sin θ + sin θ = 0 = R.H.S.

– Hence, proved.


23. secθ = tanθ + 3 tanθ secθ + 1

Solution: 

From trig. identities we have,

secθ − tanθ = 1

On cubing both sides,

(sec2θ − tan2θ)= 1

secθ − tanθ − 3secθ tanθ(secθ − tanθ) = 1[Since, (a – b)3 = a3 – b3 – 3ab(a – b)]

secθ − tanθ − 3secθ tanθ = 1

⇒ secθ = tanθ + 3secθ tanθ + 1

L.H.S. = R.H.S.

Hence, proved.


24. cosecθ = cotθ + 3cotθ cosecθ + 1

Solution:

From trig. identities we have,

cosecθ − cotθ = 1

On cubing both sides,

(cosecθ − cotθ)3 = 1

cosecθ − cotθ − 3cosecθ cotθ (cosecθ − cotθ) = 1[Since, (a – b)3 = a3 – b3 – 3ab(a – b)]

cosecθ − cotθ − 3cosecθ cotθ = 1

⇒ cosecθ = cotθ + 3 cosecθ cotθ + 1

L.H.S. = R.H.S.

Hence, proved.


25. sin4 A – cos4 A = 2 sin2 A – 1

Solution:

Taking L.H.S,

sin4 A – cos4 A

= (sinA)2 – (cos2 A)2

= (sin2 A + cos2 A) (sin2 A – cos2 A)

= sin2A – cos2A

= sin2A – (1 – sin2A) [Since, cos2 A = 1 – sin2 A]

= 2sin2 A – 1

– Hence Proved


26. (1 – tan A)2 + (1 + tan A)2 = 2 sec2 A

Solution:

Taking L.H.S,

(1 – tan A)2 + (1 + tan A)2

= (1 + tan2 A + 2 tan A) + (1 + tan2 A – 2 tan A)

= 2 (1 + tan2 A)

= 2 sec2 A [Since, 1 + tan2 A = sec2 A]

– Hence Proved


27. cosec4 A – cosec2 A = cot4 A + cot2 A

Solution:

cosec4 A – cosec2 A

= cosec2 A(cosec2 A – 1)

= (1 + cot2 A) (1 + cot2 A – 1)

= (1 + cot2 A) cot2 A

= cot4 A + cot2 A = R.H.S

– Hence Proved


💡 Do You Know?

  • The values of trigonometric ratios are exact for 0°, 30°, 45°, 60°, and 90°.
  • These ratios are frequently used in geometry, physics, astronomy, and engineering.
  • The identities like sin²θ + cos²θ = 1 help derive all other formulas in trigonometry.

📘 Quick Summary Table

Anglesincostanseccoseccot
0101
30°1/2√3/21/√32/√32√3
45°1/√21/√21√2√21
60°√3/21/2√322/√31/√3
90°1010

Trigonmetric Identities Table Summary

Identities NameIdentities
 Pythagorean Identitiessin2θ + cos2θ = 1
1 + tan2θ = sec2θ
1 + cot2θ = cosec2θ
 Reciprocal Identitiescosec θ = 1/sin θ 
sec θ = 1/cos θ
cot θ = 1/tan θ 
 Quotient Identitiestan θ = sin θ/cos θ
cot θ = cos θ/sin θ