ANAND CLASSES Study Material and Notes to learn Trigonometric Identities for Class 10 with solved problems, step-by-step explanations, and NCERT-based questions to boost your board exam preparation.
Prove the following Trigonometric Identities:
1. (1 – cos2 A) cosec2 A = 1
Solution:
Taking the L.H.S.,
(1 – cos2 A) cosec2 A
= (sin2 A) cosec2 A [∵ sin2 A + cos2 A = 1 ⇒1 – sin2 A = cos2 A]
= 12
= 1 = R.H.S.
– Hence, proved.
2. (1 + cot2 A) sin2 A = 1
Solution:
By using the identity,
cosec2 A – cot2 A = 1 ⇒ cosec2 A = cot2 A + 1
Taking,
L.H.S. = (1 + cot2 A) sin2 A
= cosec2 A sin2 A
= (cosec A sin A)2
= ((1/sin A) × sin A)2
= (1)2
= 1
= R.H.S.
– Hence, proved.
3. tan2 θ cos2 θ = 1 − cos2 θ
Solution:
We know that,
sin2 θ + cos2 θ = 1
Taking,
L.H.S. = tan2 θ cos2 θ
= (tan θ × cos θ)2
= (sin θ)2
= sin2 θ
= 1 – cos2 θ
= R.H.S.
– Hence, proved.
4. cosec θ √(1 – cos2 θ) = 1
Solution:
Using identity,
sin2 θ + cos2 θ = 1 ⇒ sin2 θ = 1 – cos2 θ
Taking L.H.S.,
L.H.S = cosec θ √(1 – cos2 θ)
= cosec θ √( sin2 θ)
= cosec θ x sin θ
= 1
= R.H.S.
– Hence, proved.
5. (sec2 θ − 1)(cosec2 θ − 1) = 1
Solution:
Using identities,
(sec2 θ − tan2 θ) = 1 and (cosec2 θ − cot2 θ) = 1
We have,
L.H.S. = (sec2 θ – 1)(cosec2θ – 1)
= tan2θ × cot2θ
= (tan θ × cot θ)2
= (tan θ × 1/tan θ)2
= 12
= 1
= R.H.S.
– Hence, proved.
6. tan θ + 1/ tan θ = sec θ cosec θ
Solution:
We have,
L.H.S. = tan θ + 1/ tan θ
= (tan2 θ + 1)/ tan θ
= sec2 θ / tan θ [∵ sec2 θ − tan2 θ = 1]
= (1/cos2 θ) x 1/ (sin θ/cos θ) [∵ tan θ = sin θ / cos θ]
= cos θ/ (sin θ x cos2 θ)
= 1/ cos θ x 1/ sin θ
= sec θ x cosec θ
= sec θ cosec θ
= R.H.S.
– Hence, proved.
7. cos θ/ (1 – sin θ) = (1 + sin θ)/ cos θ
Solution:
We know that,
sin2 θ + cos2 θ = 1
So, by multiplying both the numerator and the denominator by (1+ sin θ), we get
$$ \frac{\cos \theta}{1 – \sin \theta}
= \frac{\cos \theta (1 + \sin \theta)}{(1 – \sin \theta)(1 + \sin \theta)}
$$
$$
= \frac{\cos \theta(1 + \sin \theta)}{(1 – \sin^2 \theta)}
$$
$$
= \frac{\cos \theta (1 + \sin \theta)}{\cos^2 \theta}
$$
$$
= \frac{1 + \sin \theta}{\cos \theta}
$$
$$\frac{\cos \theta}{1 – \sin \theta}= \frac{1 + \sin \theta}{\cos \theta}$$
L.H.S. = R.H.S.
– Hence, proved.
8. cos θ/ (1 + sin θ) = (1 – sin θ)/ cos θ
Solution:
We know that,
sin2 θ + cos2 θ = 1
So, by multiplying both the numerator and the denominator by (1- sin θ), we get
$$
\frac{\cos \theta}{1 + \sin \theta}
= \frac{\cos \theta (1 – \sin \theta)}{(1 + \sin \theta)(1 – \sin \theta)}
$$
$$
= \frac{\cos \theta (1 – \sin \theta)}{1 – \sin^2 \theta}
$$
$$
= \frac{\cos \theta (1 – \sin \theta)}{\cos^2 \theta}
$$
$$
= \frac{(1 – \sin \theta)}{\cos \theta}
$$
$$
\frac{\cos \theta}{1 + \sin \theta}
= \frac{1 – \sin \theta}{\cos \theta}
$$
L.H.S. = R.H.S.
– Hence, proved.
9. cos2 A + 1/(1 + cot2 A) = 1
Solution:
We already know that,
cosec2 A − cot2 A = 1 and sin2 A + cos2 A = 1
Taking L.H.S.,
$$
\text{L.H.S} = \cos^2 A + \frac{1}{1 + \cot^2 A}
$$
$$
= \cos^2 A + \frac{1}{\csc^2 A}
$$
$$
= \cos^2 A + \left( \frac{1}{\csc A} \right)^2
$$
= cos2 A + sin2 A = 1 = R.H.S.
– Hence, proved.
10. sin2 A + 1/(1 + tan 2 A) = 1
Solution:
We already know that,
sec2 θ − tan2 θ = 1 and sin2 θ + cos2 θ = 1
Taking L.H.S.,
$$
\text{L.H.S} = \sin^2 A + \frac{1}{1 + \tan^2 A}
$$
$$
= \sin^2 A + \frac{1}{\sec^2 A}
$$
$$
= \sin^2 A + \left( \frac{1}{\sec A} \right)^2
$$
= sin2 A + cos2 A = 1 = R.H.S.
– Hence, proved.
11.
$$\sqrt{\frac{1 – \cos \theta}{1 + \cos \theta}} $$
= cosec θ – cot θ
Solution:
We know that,
sin2 θ + cos2 θ = 1
Taking the L.H.S.,
$$
\text{L.H.S} = \sqrt{\frac{1 – \cos \theta}{1 + \cos \theta}}
$$
$$
= \sqrt{\frac{(1 – \cos \theta)(1 – \cos \theta)}{(1 + \cos \theta)(1 – \cos \theta)}}
$$
$$
= \sqrt{\frac{(1 – \cos \theta)^2}{1 – \cos^2 \theta}}
$$
$$
= \sqrt{\frac{(1 – \cos \theta)^2}{\sin^2 \theta}}
$$
$$
= \frac{1 – \cos \theta}{\sin \theta}
$$
$$
= \frac{1}{\sin \theta} – \frac{\cos \theta}{\sin \theta}
$$
= cosec θ – cot θ = R.H.S.
– Hence, proved.
12. 1 – cos θ/ sin θ = sin θ/ 1 + cos θ
Solution:
We know that,
sin2 θ + cos2 θ = 1
So, by multiplying both the numerator and the denominator by (1+ cos θ), we get
$$
\text{L.H.S} = \frac{1 – \cos^2 \theta}{(1 + \cos \theta)(\sin \theta)}
$$
$$
= \frac{\sin^2 \theta}{(1 + \cos \theta)(\sin \theta)}
$$
$$
= \frac{\sin \theta}{1 + \cos \theta}
$$
= R.H.S.
– Hence, proved.
13. sin θ/ (1 – cos θ) = cosec θ + cot θ
Solution:
Taking L.H.S.,
$$
\text{L.H.S} = \frac{\sin \theta}{1 – \cos \theta}
$$
On multiplying by its conjugate, we have
$$
= \frac{\sin \theta}{1 – \cos \theta} \times \frac{1 + \cos \theta}{1 + \cos \theta}
$$
$$
= \frac{\sin \theta (1 + \cos \theta)}{1 – \cos^2 \theta}
$$
$$
= \frac{\sin \theta + (\sin \theta \times \cos \theta)}{\sin^2 \theta}
$$
$$
= \frac{\sin \theta}{\sin^2 \theta} + \frac{\sin \theta \times \cos \theta}{\sin^2 \theta}
$$
$$
= \frac{1}{\sin \theta} + \frac{\cos \theta}{\sin \theta}
$$
= cosec θ + cot θ = R.H.S.
– Hence, proved.
14. (1 – sin θ) / (1 + sin θ) = (sec θ – tan θ)2
Solution:
Taking the L.H.S.,
$$
\text{L.H.S} = \frac{1 – \sin \theta}{1 + \sin \theta}
$$
On multiplying by its conjugate, we have
$$
= \frac{1 – \sin \theta}{1 + \sin \theta} \times \frac{1 – \sin \theta}{1 – \sin \theta}
$$
$$
= \frac{(1 – \sin \theta)(1 – \sin \theta)}{1 – \sin^2 \theta}
$$
$$
= \frac{(1 – \sin \theta)^2}{\cos^2 \theta}
$$
$$
= \left( \frac{1 – \sin \theta}{\cos \theta} \right)^2
$$
$$
= \left( \frac{1}{\cos \theta} – \frac{\sin \theta}{\cos \theta} \right)^2
$$
= (sec θ – tan θ)2 = R.H.S.
– Hence, proved.
15. tan2 θ − sin2 θ = tan2 θ sin2 θ
Solution:
Taking L.H.S.,
L.H.S = tan2 θ − sin2 θ
$$
= \frac{\sin^2 \theta}{\cos^2 \theta} – \sin^2 \theta
$$
$$
= \sin^2 \theta \left( \frac{1}{\cos^2 \theta} – 1 \right)
$$
$$
= \sin^2 \theta \left( \frac{1 – \cos^2 \theta}{\cos^2 \theta} \right)
$$
$$
= \sin^2 \theta \left( \frac{\sin^2 \theta}{\cos^2 \theta} \right)
$$
= sin2 θ tan2 θ = R.H.S.
– Hence, proved.
16. (cosec θ + sin θ)(cosec θ – sin θ) = cot2θ + cos2θ
Solution:
Taking L.H.S. = (cosec θ + sin θ)(cosec θ – sin θ)
On multiplying, we get
= cosec2 θ – sin2 θ
= (1 + cot2 θ) – (1 – cos2 θ) [Using cosec2 θ − cot2 θ = 1 and sin2 θ + cos2 θ = 1]
= 1 + cot2 θ – 1 + cos2 θ
= cot2 θ + cos2 θ
= R.H.S.
– Hence, proved.
17. (sec θ + cos θ) (sec θ – cos θ) = tan2 θ + sin2 θ
Solution:
Taking L.H.S. = (sec θ + cos θ)(sec θ – cos θ)
On multiplying, we get,
= sec2 θ – cos2 θ
= (1 + tan2 θ) – (1 – sin2 θ) [Using sec2 θ − tan2 θ = 1 and sin2 θ + cos2 θ = 1]
= 1 + tan2 θ – 1 + sin2 θ
= tan 2 θ + sin 2 θ
= R.H.S.
– Hence, proved.
18. sec A(1- sin A) (sec A + tan A) = 1
Solution:
Taking L.H.S. = sec A(1 – sin A)(sec A + tan A)
Substituting sec A = 1/cos A and tan A =sin A/cos A in the above, we have,
L.H.S = 1/cos A (1 – sin A)(1/cos A + sin A/cos A)
= 1 – sin2 A / cos2 A [After taking L.C.M]
= cos2 A / cos2 A [∵ 1 – sin2 A = cos2 A]
= 1
= R.H.S.
– Hence, proved.
19. (cosec A – sin A)(sec A – cos A)(tan A + cot A) = 1
Solution:
Taking L.H.S. = (cosec A – sin A)(sec A – cos A)(tan A + cot A)
$$
= \left( \frac{1}{\sin A} – \sin A \right) \left( \frac{1}{\cos A} – \cos A \right) \left( \frac{\sin A}{\cos A} + \frac{\cos A}{\sin A} \right)
$$
$$
= \left( \frac{1 – \sin^2 A}{\sin A} \right) \left( \frac{1 – \cos^2 A}{\cos A} \right) \left( \frac{\sin^2 A + \cos^2 A}{\sin A \cos A} \right)
$$
= (cos2 A/ sin A) (sin2 A/ cos A) (1/ sin A cos A) [∵ sin2 θ + cos2 θ = 1]
= (sin A cos A) (1/ cos A sin A)
= 1
= R.H.S.
– Hence, proved.
20. (1 + tan2 θ)(1 – sin θ)(1 + sin θ) = 1
Solution:
Taking L.H.S. = (1 + tan2θ)(1 – sin θ)(1 + sin θ)
And, we know sin2 θ + cos2 θ = 1 and sec2 θ – tan2 θ = 1
So,
L.H.S = (1 + tan2 θ)(1 – sin θ)(1 + sin θ)
= (1 + tan2 θ){(1 – sin θ)(1 + sin θ)}
= (1 + tan2 θ)(1 – sin2 θ)
= sec2 θ (cos2 θ)
= (1/ cos2 θ) x cos2 θ
= 1
= R.H.S.
– Hence, proved.
21. sin2 A cot2 A + cos2 A tan2 A = 1
Solution:
We know that,
cot2 A = cos2 A/ sin2 A and tan2 A = sin2 A/cos2 A
Substituting the above in L.H.S., we get
L.H.S = sin2 A cot2 A + cos2 A tan2 A
= {sin2 A (cos2 A/ sin2 A)} + {cos2 A (sin2 A/cos2 A)}
= cos2 A + sin2 A
= 1 [∵ sin2 θ + cos2 θ = 1]
= R.H.S.
– Hence, proved.
22. (cos2 θ/ sin θ) – cosec θ + sin θ = 0
Solution:
Taking L.H.S. and using sin2 θ + cos2 θ = 1, we have
$$
\text{L.H.S} = \frac{\cos^2 \theta}{\sin \theta} – \csc \theta + \sin \theta
$$
$$
= \left( \frac{\cos^2 \theta}{\sin \theta} – \csc \theta \right) + \sin \theta
$$
$$
= \left( \frac{\cos^2 \theta}{\sin \theta} – \frac{1}{\sin \theta} \right) + \sin \theta
$$
$$
= \left( \frac{\cos^2 \theta – 1}{\sin \theta} \right) + \sin \theta
$$
$$
= \left( \frac{-\sin^2 \theta}{\sin \theta} \right) + \sin \theta
$$
= – sin θ + sin θ = 0 = R.H.S.
– Hence, proved.
23. sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
Solution:
From trig. identities we have,
sec2 θ − tan2 θ = 1
On cubing both sides,
(sec2θ − tan2θ)3 = 1
sec6 θ − tan6 θ − 3sec2 θ tan2 θ(sec2 θ − tan2 θ) = 1[Since, (a – b)3 = a3 – b3 – 3ab(a – b)]
sec6 θ − tan6 θ − 3sec2 θ tan2 θ = 1
⇒ sec6 θ = tan6 θ + 3sec2 θ tan2 θ + 1
L.H.S. = R.H.S.
Hence, proved.
24. cosec6 θ = cot6 θ + 3cot2 θ cosec2 θ + 1
Solution:
From trig. identities we have,
cosec2 θ − cot2 θ = 1
On cubing both sides,
(cosec2 θ − cot2 θ)3 = 1
cosec6 θ − cot6 θ − 3cosec2 θ cot2 θ (cosec2 θ − cot2 θ) = 1[Since, (a – b)3 = a3 – b3 – 3ab(a – b)]
cosec6 θ − cot6 θ − 3cosec2 θ cot2 θ = 1
⇒ cosec6 θ = cot6 θ + 3 cosec2 θ cot2 θ + 1
L.H.S. = R.H.S.
Hence, proved.
25. sin4 A – cos4 A = 2 sin2 A – 1
Solution:
Taking L.H.S,
sin4 A – cos4 A
= (sin2 A)2 – (cos2 A)2
= (sin2 A + cos2 A) (sin2 A – cos2 A)
= sin2A – cos2A
= sin2A – (1 – sin2A) [Since, cos2 A = 1 – sin2 A]
= 2sin2 A – 1
– Hence Proved
26. (1 – tan A)2 + (1 + tan A)2 = 2 sec2 A
Solution:
Taking L.H.S,
(1 – tan A)2 + (1 + tan A)2
= (1 + tan2 A + 2 tan A) + (1 + tan2 A – 2 tan A)
= 2 (1 + tan2 A)
= 2 sec2 A [Since, 1 + tan2 A = sec2 A]
– Hence Proved
27. cosec4 A – cosec2 A = cot4 A + cot2 A
Solution:
cosec4 A – cosec2 A
= cosec2 A(cosec2 A – 1)
= (1 + cot2 A) (1 + cot2 A – 1)
= (1 + cot2 A) cot2 A
= cot4 A + cot2 A = R.H.S
– Hence Proved
💡 Do You Know?
- The values of trigonometric ratios are exact for 0°, 30°, 45°, 60°, and 90°.
- These ratios are frequently used in geometry, physics, astronomy, and engineering.
- The identities like sin²θ + cos²θ = 1 help derive all other formulas in trigonometry.
📘 Quick Summary Table
Angle | sin | cos | tan | sec | cosec | cot |
---|---|---|---|---|---|---|
0° | 0 | 1 | 0 | 1 | – | – |
30° | 1/2 | √3/2 | 1/√3 | 2/√3 | 2 | √3 |
45° | 1/√2 | 1/√2 | 1 | √2 | √2 | 1 |
60° | √3/2 | 1/2 | √3 | 2 | 2/√3 | 1/√3 |
90° | 1 | 0 | – | – | 1 | 0 |
Trigonmetric Identities Table Summary
Identities Name | Identities |
---|---|
Pythagorean Identities | sin2θ + cos2θ = 1 |
1 + tan2θ = sec2θ | |
1 + cot2θ = cosec2θ | |
Reciprocal Identities | cosec θ = 1/sin θ |
sec θ = 1/cos θ | |
cot θ = 1/tan θ | |
Quotient Identities | tan θ = sin θ/cos θ |
cot θ = cos θ/sin θ |